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Abstract 

Objective: Cancer for Unknown Primary is cancer with unidentified metastases, and it is believed 
that CUP diagnosis affects survival in two different pathways; CUP may innately differ from other 
cancers with identified primaries, so the diagnosis itself can influence how long a person can 
survive. Another way is that CUP diagnosis affects how much people receive treatment, and the 
treatment, the mediator, is the factor to influence the outcome. In this project, using the dataset of 
10575 cancer patients, I assessed direct and indirect effects of CUP diagnosis onto survival. 

Method: I used Inverse Propensity Weight by calculating marginal probabilities, estimated from 
logistic models. For indirect effect, I calculated P(treatment|confounders) as marginal probabilities 
to estimate IPW, while using P(pcup|confounders,treatment) for direct effect. All marginal 
probabilities are controlled within 0.05 and 0.95 to prevent extreme weight. 

Result: IPW for direct effect is 7.376, and that for indirect effect is 1.545. 

Conclusion: Direct effect of CUP diagnosis onto survival is much greater than indirect effect. CUP 
may innately from other cancers with identified metastases, and thus diagnosis itself can influence 
the patient’s survival regardless of treatment. 

  



Introduction 

Most researchers know that association is different from causation; association does not require 
directions between variables unlike causation. For example, when ice cream sale goes up, the rate 
of someone drowning may go up as well. However, it would be wrong to conclude that eating 
more ice cream leads to a higher chance of drowning; those variables are positively associated, but 
one is not causing the other. In this case, the hidden variable that confound the relationship is the 
weather or daytime temperature. As the temperature increases and the weather gets hotter, more 
people go out to swim as well as eat more ice cream. Therefore, ice cream sales and the number 
of people drowning, each affected by the weather, increase independently. 

Like the weather variable in the example above, we call variables, which distort the relationship 
between two variables, confounders, and they affect both the predictor and outcome variables. 
Confounders can either mask a relationship, or suggest there is a significant relationship between 
variables where, in fact, there is none. Furthermore, they can even reverse the relationship between 
predictor and outcome variables, a phenomenon known as Simpson’s Paradox1. 

For example, let X be whether people smoke cigarettes (1 for yes, 0 otherwise), and Y be whether 
they have heart disease. In this case, if we ignore age, which is a confounder, C, the result might 
be that we need to smoke cigarettes to prevent heart disease, which would not make sense. This 
could be because, older people tend to smoke cigars or pipes instead of cigarettes, but also 
regardless of smoking, old age causes heart disease. Therefore, adjusting for confounders is 
necessary to investigate a causal the relationships between variables. We can infer causation 
between variables when all possible confounders that influence them are adjusted for2,3. 

There is also another type of variable called mediator, which bridges the relationship between the 
predictor and outcome. In this case, X has both direct and indirect effects on Y; indirect effect 
occurs when X affects mediator M, which further affects Y, while direct effect occurs when X affects 
Y without another variable in the causal pathway2,3. 

Lipid level is a possible mediator between smoking and heart disease (Greenland and Robbins). 
An indirect effect happens when smoking cigarettes increases lipid concentration in blood, leading 
to heart disease, while a direct effect occurs when smoking cigarettes increases heart disease 
through other mechanisms3. 

There are several ways to address mediation effects: path analysis is often used when mediator and 
outcome variables are continuous2. Another approach is using a counterfactual approach. In the 
counterfactual approach, actual observed responses are estimated with responses that might have 
been observed had the risk factor been changed to a different level. The potential outcome is 
counterfactual to what is observed. Therefore, if X is binary and it is 0, Y0 = actual observed 



outcome, and Y1 = counterfactual outcome, what Y would have been if X were 1. Similarly, when 
X is 1, Y1 = observed response, Y0 = outcome if X were 0. It is possible, however, to estimate 
counterfactual outcomes by using observed outcomes if the samples from those are closely similar 
except the predictor; the estimate of Y0 when X is 1 would become Y0 when X is 0, and the 
estimate of Y1 when X is 0 would become Y1 when X is 1. Thus, we don’t have to directly measure 
counterfactual outcomes with the same people, and still can estimate total causal effect by 
subtracting Y1 to Y0. For example, using smoking and heart disease example again, when people 
smoke, Y1 would be the response, while Y0 would be the response if the same people were non-
smokers. For non-smokers, Y0 would be the observed outcome, and Y1 would be the response if 
they were smokers. To estimate counterfactual outcomes, we assume those outcomes would have 
been close to our observed responses if we measured from people with approximately the same 
backgrounds except smoking factor. Therefore, we can estimate causal effect by using the observed 
Y1 and Y0 even though those outcomes were not assessed from the same people. 

The path diagram above is the basic model for causal relationships. If all variables are continuous, 
each path represents linear relationships between variables. Then, 

M = 𝛼𝛼0 + 𝛼𝛼1𝑋𝑋 + 𝜀𝜀1 

𝑌𝑌 = β0 + β1M + β2X + ε2 

If we plug in M into the equation of Y, the equation becomes the following: 

Y = β0 + β1(α0 + α1X + ε2) + β2X + ε1 

= β0 + β1α0 + β1α1X + β1ε2 + β2X + ε1 

= (β0 + β1α0) + β1α1X + β2X + (β1ε2 + ε1) 

Therefore, β1α1 would be the indirect effect, β2 would be the direct effect, and β1α1 + β2 
would be the total causal effect from X onto Y. If we put this into the context of smoking and heart 
disease, β1α1 would be how much smoking affects heart disease through changing blood lipid 
levels, which further affects heart disease. β2 would be how much smoking itself affects heart 
disease regardless of blood lipid levels. The total of those two would be the total causal effect of 
smoking onto heart disease3,7. 

Barron and Kenny paper also mentioned Sobel’s method to assess indirect effect2. Based on the 
equations above, using α1(the effect from X to M) and β1(the effect from M to Y), the indirect 
effect is: 



�𝛽𝛽12 ∗ 𝑠𝑠𝛼𝛼12 +𝛼𝛼12 ∗ 𝑠𝑠𝛽𝛽12  

where 𝑠𝑠𝛼𝛼12  is the standard error of α1, and 𝑠𝑠𝛽𝛽12  as the standard error of β1. 

If all variables, however, are binary, causal effect is assessed through logistic regression. The path 
diagram could have been more complicated with other variables such as intermediate confounder, 
and confounders between X and M, M and Y, and X and Y, denoted by L, U3, U2, U1 respectively. 
However, several assumptions were made to address these variables. First, sequential conditional 
exchangeability assumptions state7: 

Y(x, m) ⊥ X|C = c,∀x, m, c 

Y(x, m) ⊥ M|C = c, X = x, L = l,∀x, m, c, l 

M(x) ⊥ X|C = c,∀x, c 

These assumptions indicate that there is no unmeasured confounder in this model. In addition, 
cross-world independence assumption states that 

M(x∗) ⊥ Y(x, m)|C = c,∀x, m, c, x∗ 

and this assumption indicates that there is no L7. 

There are different types of direct and indirect effects. Controlled direct effect is the effect of Y on 
X when mediator is fixed at a certain value, and the formula is the following:  

E{Y(1, m)} − E{Y(0, m)} 

There is also another direct called natural direct effect, which simply ignores the mediator 
completely. Therefore, the formula to estimate natural direct effect is: 

E[Y{1, M(0)}] − E[Y{0, M(0)}] 

Natural indirect effect shows how much an expected value would change when mediator plays in 
a relationship. This compares the values of effect on Y between when M is 0 and 1, leading to the 
formula, 

E[Y{1, M(1)}] − E[Y{1, M(0)}] 

Lastly, total causal effect is defined by the sum of the natural direct and indirect effects, with its 
formula7, 

E[Y{1, M(1)}] − E[Y{0, M(0)}] 

In this research, we are interested in using propensity weighting to study direct and indirect effects 
when the outcome, the causal variable of interest, and mediator are all binary. The model consists 
of three main variables, X is the predictor variable, Y is the response variable, and M is the 
mediator. Direct effect occurs when the predictor X affects the outcome directly without passing 
the mediator M. An indirect effect occurs when the predictor affects the mediator, which then 
affects the outcome. Sequential ignorability assumption was required which stated that the data 



collection method does not depend on the missing data. 

Data Analysis 

We will apply the methods developed to a study of Cancer of Unknown Primary (CUP), a type of 
cancer that is detected through metastases but for which a primary tumor cannot be identified8. 
Our variable of interest or risk factor, is a diagnosis of CUP. This diagnosis is made through a 
series of tests. It is, however, very hard to diagnose CUP with confidence because sometimes it 
can be the case where the primary can be identified later, but since doctors cannot identify the 
primary within a certain time frame, they diagnose CUP for patients. It can be also the case where 
the tests to diagnose CUP may not be sensitive enough to properly diagnose patients. Every cancer 
has its own specific treatment based on metastases, but since CUP patients do not know what 
specific cancers they have. Therefore, when receiving treatment, they go through the general 
treatment process, which is inefficient as well as deteriorates their bodies much quickly, and thus 
CUP patients usually die much earlier than regular cancer patients. In the dataset, which I 
investigated, 4161 out of 10575 patients were diagnosed with CUP. Surprisingly, however, unlike 
my anticipation, the mean survival time for CUP patients was much longer than that for regular 
cancer patients. 

Our outcome variable is survival, and I mainly looked at survival as a binary variable. The mediator 
in our case is whether the patients received treatment for the cancer. We want to see if there is a 
direct effect of CUP diagnosis itself on the outcome. We hypothesize that regardless of treatment 
if there is a direct effect on survival, this indicates that a CUP is innately different from other 
cancers where the primary tumor is typically found first or simultaneously with metastases. The 
mediator in our case is treatment. Whether or not treatment is given may have an effect on survival. 
However, whether or not treatment is given and what type of treatment is influenced by the primary 
tumor diagnosis. 

However, in this causal model, there are confounders and possibly moderators, which affects the 
variables in the causal model, and thus may affect the causal relationships we wish to study. Main 
confounders I considered were age, sex, the region of living, sex, ethnicity, income (variable 
r_cmedinc), and comorbidities. For example, one of the main confounders of our interest, age, can 
influence how many patients are diagnosed; other health problems tend to be present as people get 
old. Age also can affect whether patients would go through the rigors of cancer treatments, as well 
as how long they can expect to survive. 

Before fitting any models, I changed the outcome variable into binary by setting 1 as people who 
lived longer than 6 months, assuming that each month consists of 30 days, and 0 otherwise. The 
result showed that about one fourth of the patients lived longer than 6 months. The dataset also 
contained majority of patients who did not receive treatments, and over half of the patients in the 
sample were diagnosed with CUP. Logistic regression model was used to estimate different 
probabilities for each patient. I first fitted the logistic regression model for estimating 
P(CUP diagnosis|confounders) 

logit(pcup)~ 𝛽𝛽1 ∗ agegr + 𝛽𝛽2 ∗ URBAN + 𝛽𝛽3 ∗ SSEX + 𝛽𝛽4 ∗ ethnicity + 𝛽𝛽5 ∗ rcmedinc + 𝛽𝛽6
∗ comorb 



Then, I fitted P(CUP diagnosis|confounders) for each patient and displayed through histogram 
below. 

The probability distribution looks good with no extreme values. Next, I fitted two other logistic 
models to see if the probability of getting treatment differs whether a patient is diagnosed with 
CUP. Both models have the same form as below: 

logit(tx) ~ 𝛽𝛽1 ∗ pcup + 𝛽𝛽2 ∗ agegr + 𝛽𝛽3 ∗ URBAN + 𝛽𝛽4 ∗ S_SEX + 𝛽𝛽5 ∗ ethnicity + 𝛽𝛽6
∗ r_cmedinc + 𝛽𝛽7 ∗ comorb 

Similar to the previous model, I displayed each patient’s fitted probability through histograms. 
Some of the values for the model with non-exposure was too low (below 0.05), so I adjusted those 
numbers to 0.05 to maintain the sampling weight less than 20. The histograms are displayed below: 

According to the histograms above, Lastly, to calculate P(predictor|confounder) depending on 
the mediator, I fitted the logistic model: 



logit(pcup|tx) ~ 𝛽𝛽1 ∗ agegr + 𝛽𝛽2 ∗ URBAN + 𝛽𝛽3 ∗ S_SEX + 𝛽𝛽4 ∗ ethnicity + 𝛽𝛽5 ∗ r_cmedinc
+ 𝛽𝛽6 ∗ comorb 

It is the same model that I fitted in the very beginning, but this time, I fitted twice based on the 
value of the mediator. The histogram of P(predictor|confounder)  for people who did not 
receive treatment is below: 

The histogram of P(pcup|confounders) for patients who received treatments were below: 

Based on two histograms above, we can see that great proportion of people receiving treatment is 
diagnosed with CUP. 

Using the probabilities that we calculated previously as ei, I estimated marginal probabilities of 
CUP diagnosis onto survival. The probability of outcome under exposure is: 
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And the probability of outcome under non-exposure is: 
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Then, using these formulas, I could estimate inverse propensity weighting estimators as follow: 

IPW =
�1 − p0�� × p1�

p0� × (1 − p1�)
 

The IPW for the indirect effect and direct effect turned out 1.545 and 7.376 respectively. This 
shows that direct effect is greater than indirect effect. Therefore, even though many people with 
CUP diagnosis received treatment, survival is more greatly influenced by the diagnosis itself or 
other mechanisms rather than the treatment. 

Discussion 

For this project, I fitted marginal models not conditional models, and since directly estimating 
𝑃𝑃(𝑌𝑌1 = 1) and P(𝑌𝑌0 = 1) is not possible, additional assumptions were necessary9. Direct and 
indirect effects are assessed separately as I calculated inverse propensity weight by using marginal 
probabilities estimated from the logistic models. The benefits of the approach I took is that it does 
not require high levels of computing, as well as so it can be easily used by others. However, my 
result may not be accurate as I had to adjust the fitted probabilities between 0.05 and 0.95 to 
prevent the weight of each probability from getting too large. Therefore, the result may have been 
different if I didn’t adjust the probabilities.  

Conclusion 

Direct effect of CUP diagnosis onto survival is much greater than indirect effect. CUP may innately 
from other cancers with identified metastases, and thus diagnosis itself can influence the patient’s 
survival regardless of treatment. 
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Code Appendix 

#making the outcome binary(1 when survjs>180, 0 otherwise) 
pcup$survival = ifelse(pcup$survjs>180,1,0) 

#subsetting patients based on the predictor(pcup) 
x1 = subset(pcup, pcup == 1) 
mean(x1$survjs) 
x0 = subset(pcup, pcup == 0) 
mean(x0$survjs) 

#subsetting patients based on the mediator(treatment) 
m0 = subset(pcup, tx == 0) 
mean(m0$survjs) 
m1 = subset(pcup, tx == 1) 
mean(m1$survjs) 
 

#indirect effect 
#fitting the model to get P(predictor|confounder) 

logit.model1 = glm(pcup ~ agegr+URBAN+S_SEX+ethnicity+r_cmedinc+comorb, data = 
pcup, family = binomial) 

#fitting the model to get P(treatment|confounder) when predictor is 0 or 1 



logit.model2.x0 = glm(tx ~ pcup+agegr+URBAN+S_SEX+ethnicity+r_cmedinc+comorb, 
data = x0, family = binomial) 
logit.model2.x1 = glm(tx ~ pcup+agegr+URBAN+S_SEX+ethnicity+r_cmedinc+comorb, 
data = x1, family = binomial) 

#obtaining fitted values for models 
p1 = logit.model1$fitted.values 
p2.0 = logit.model2.x0$fitted.values 
p2.1 = logit.model2.x1$fitted.values 

#histograms of probabilities for each model 
hist(p1,main="Histogram of P(pcup|confounders)") 
hist(p2.0,main="Histogram of P(treatment|pcup=0 & confounders)") 
hist(p2.1,main="Histogram of P(treatment|pcup=1 & confounders)") 

#fixing the weighting (<0.05 to 0.05 and >0.95 to 0.95) 
p2.0[p2.0<0.05] = 0.05 
summary(p1) 
summary(p2.0) 
summary(p2.1) 
 

#direct effect 
#fitting the models based on the treatment(mediator) 

logit.model3.m0 = glm(pcup ~ agegr+URBAN+S_SEX+ethnicity+r_cmedinc+comorb, data 
= m0, family = binomial) #when treatment is 0 
logit.model3.m1 = glm(pcup ~ agegr+URBAN+S_SEX+ethnicity+r_cmedinc+comorb, data 
= m1, family = binomial) #when treatment is 1 

#obtaining fitted values for both models 
p3.0 = logit.model3.m0$fitted.values 
p3.1 = logit.model3.m1$fitted.values 
summary(p3.0) 
summary(p3.1) 
hist(p3.0) 
hist(p3.1,main="Histogram of P(pcup|confounders) for people with treatment") 
 

#calculating inverse propensity weighting 
#indirect effect 
#P(Y0 = 1) for P(treatment|confounders) when not exposed 

P.Y0_1.p2.0 = (sum((1-x0$pcup)/(1-p2.0)))^-1*sum((1-x0$pcup)*x0$survival/(1-p2.0)) 
#P(Y1 = 1) for P(treatment|confounders) when exposed 

P.Y1_1.p2.1 = (sum(x1$pcup/p2.1))^-1*sum(x1$pcup*x1$survival/p2.1) 
#IPW 

IPW_indirect = P.Y1_1.p2.1*(1-P.Y0_1.p2.0)/((1-P.Y1_1.p2.1)*P.Y0_1.p2.0) 



#direct effect 
#P(Y1 = 1) for P(cup diag|confounders) when M=1 

P.Y1_1.p3.1 = (sum(m1$pcup/p3.1))^-1*sum(m1$pcup*m1$survival/p3.1) 
#P(Y0 = 1) for P(cup diag|confounders) when M=0 

P.Y0_1.p3.0 = (sum((1-m0$pcup)/(1-p3.0)))^-1*sum((1-m0$pcup)*m0$survival/(1-p3.0)) 
#IPW 

IPW_direct = P.Y1_1.p3.1*(1-P.Y0_1.p3.0)/(P.Y0_1.p3.0*(1-P.Y1_1.p3.1)) 


