STA 290 Seminar: Regina Liu

Regina Liu

Event Date

Mathematical Sciences 1147 (Colloquium Room)

SPEAKER: Regina Liu; Distinguished Professor, Statistics, Rutgers University

TITLE:  “Prediction with Confidence – General Framework for Predictive Inference”

ABSTRACT: We propose a general framework for prediction in which a prediction is in the form of a distribution function, called ‘predictive distribution function’. This predictive distribution function is well suited for prescribing the notion of confidence under the frequentist interpretation and  providing meaningful answers for prediction-related questions. Its very form of a distribution function also lends itself as a useful tool for quantifying uncertainty in prediction. A general approach under this framework is formulated and illustrated using the so-called confidence distributions (CDs). This CD-based prediction approach inherits many desirable properties of CD, including its capacity to serve as a common platform for directly connecting the existing procedures of predictive inference in Bayesian, fiducial and frequentist paradigms. We discuss the theory underlying the CD-based predictive distribution and related efficiency and optimality. We also propose a simple yet broadly applicable Monte-Carlo algorithm for implementing the proposed approach. This concrete algorithm together with the proposed definition and associated theoretical development provide a comprehensive statistical inference framework for prediction. Finally, the approach is demonstrated by simulation studies and a real project on predicting the volume of application submissions to a government agency. The latter shows the applicability of the proposed approach to even dependent data settings.

This is joint work with Jieli Shen, Goldman Sachs, and Minge Xie, Rutgers University.


DATE:                    Thursday, October 3rd, 4:10pm

LOCATION:          MSB 1147, Colloquium Room

REFRESHMENTS: 3:30pm MSB 4110 (4th floor lounge)

STA 290 Seminar Series